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1. PROBLEM FORMULATION

1.1. Functonal spaces.

Let n, m, {m;}72, be positive integers such that 0 < m; < 2m — 1 and p,
T be positive real numbers. In what follows §2 denotes a bounded open set in R"
with sufficiently smooth boundary 0€2. We shall use notations Qr = Q x (0,7),
St=00x(0,T).

Let a = (01,02,...0,) be multi-index with non-negative integer components. For
z € R™ we denote |a|=a1+az+ - -+ a,, 2*=271z3% ... 28,

For u: Qr — R and positive integer k > 0 we shall use notations

a BN B2 a8 Y= T
Du_(é;;) (3_332) '”(3:1:,,) uw, DPw={P%u:|a|=k})

Noting M (k) we’ll mean amount of all different multiindexes of order that is less or
equal k.
qWe fixed further some notations and definitions of norms in anisotropic Holder and
Sobolev spaces that are analogous to corresponding spaces in the monograph [1].
For positive integer b and positive non-integer k the space C(®***)(Qr) is de-
fined to be the Banach space of all functions u, that have continuous derivatives
(2)° D*u(z,t), |a| + bs < bk with (z,t) € Qr and the finite norm

bk,
WgeR = 3

|ex|+bs <[bk]

0

s (0)
a o
(a) D%u(z,t) 2

T

bk
& Iulg,Q)T:

where |u|81), = max {|u(z,1)|: (z,t) € @7}, [k] is greatest integer function of k and

o a\* 1 (bk—[bk])
WS = ¥ |(5) Doute +
|a|+bs=[bk] z,Qr
(bk—|c|—ba)

(%)s D%u(z,t)

D B

0<bk—|a|—bs<b

tsQ'.'ll"

[ulzig, = sup { '“(wfx) = ;‘,Ey’ Nooyenoryte, T)},
B e |u(z, t) — u(z, 7)|
|u‘t,QT —sup{ TR :z€Q,t,7€(0,T),t#79,
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where [ € (0,1).
For p > 1 and positive integers b, k by W,ﬁbk’k)(QT) we denote the Banach space of
all functions u that have generalized derivatives (Z)° D%u € Lo(Qr), ||+ bs < bk .

The norm of the space W,gbk’k)(QT) will be defined in the following way:
iz -{ =

3 5
s D«
(6t) 5
|a|+bs<bk

1

P

||u||p,Q,.={ f ufp d:cdt} |
Qr

In the case of positive non-integer k£ such that bk is not integer we denote
Wébk’k) (Qr) to be Banach space of all functions « that have generalized derivatives
(%)SD“u € L,(Qr), |a|+ bs < bk and finite norm

1

p P
, where
p.Qr

1/p
bk, 0 P
P = (2) oo+ (rao,)"
|a|+bs<[bk] p,Qr
(bk—[bk])\ P
bk a
uuui,pfoﬁ{ > (H(a‘) )+
|| +bs=[bk] z,p,QT
5\ (Bk=lal=bs) P, 1/p
@, )
O<bk—|a|—bs<b ot t,p,Qr

1/p
Nul® . = f dtf/ — uly, )lpd:cdy 0<i<1
m,PsQT Q2 lx _ y|n+;p£ J ¥
1/p
® — u(z, 7)[P
ll® o, = { / dz / /{mz |t——7'|1+P‘ dtard , 0<i<l.

Let S be the n — 1 - dimentional surface in R™ and lg > 0. We sha]l say that S

belongs to class C' if there exists a finite collection of open sets {U;}/_; and d > 0
such that:

I
Sl) Sic U U;;
i=1

S;) for each i there exists £) € § (Ui such that the set S\ U; in local Cartesian
system {y} with origin at ¢®) is given by the equation y, = hi(y’), ¥ € D(d),
where y' = (y1,92,---Yn-1), D(d) = (—d,d)"?;

S3) for each i h; € C(D(d)).

Let b be positive integer, £ >0, p>1, and 90 € Cl , where lo > max{bk,1}. We
denote Dr(d) = D(d) x (0,T). For u: Sr — R we shall use the notations u(®(y/,t) =
u(¢;i(y', hi(y')),t) , where (v',t) € Dr(d), i = 1,1 and ¢;(y) is the transformation
from local coordinate system {y} to system {z}.
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We define the space C(**)(Sr) as the set of all functions u : S — R such that
u® € C%*)(Dr(d)), i = 1,1 with the norm

(bk,k) _ i) (bkk) - _ T
|u | ma.x{|u( )lpr(d =1,1}.
We define the space W "*)(Sr) as the set of all functions u: Sy — R such that
u® € W,Sbk’k) (Dr(d)),i = 1,1 with the norm

1
P

I
(bk,k) i)y (bk,k) \P
lull 5 = {Z(uu“n,‘,pﬁ(d)) }

i=1

It is a simple task to check that norms con‘espondlng to different covers of 902 by
sets U; are equivalent.
We denote for positive integer k

WRE:0(Qr) = {u € W k)(Qr) : ?3;: =0,0<s<k- 1} .
1.2. Main problem and assumptions.
We consider boundary value problem
_ Ou 1 2m
dlu] = T F(z,t,u,Du,...D'"u) = f(z,t), (z,t) € Qr, (1.1)
U;[u] = Gj(z,t,u,... D™u) = gi(z,t), (z,t) € St, 1=1,m, (1.2)
u(z,0) = h(z), z2€f (1.3)

Solution of problem (1.1) — (1.3) will be considered in the space W, 154"" 2(Qr). We

assume that numbers p, n, m, m; satisfy inequalities

2
p>22 p> m+n,
2m
2m+1 L]
o . < —_ = :
p#2m—mj’ mj<2m-—1, j ,m (14)

and the boundary 90 of the domain (2 satisfies the condition
o0 e C4™. (1.5)
We define

—Q—F(x,t, €),lal £2m, € ={¢a € R: || < 2m},

Fa(msts‘f) = 3€

I
3

3(
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and suppose that the following conditions for the functions F G; are fulfilled:

Fy ) functions F(z,t,£) have all mixed continuous derivatives with respect to £ up
to the order 2m+1, F(z,t,0)=0; :

F,) there exists continuous function v : R¥ — R* such that for each & € RM(2m)
n € R™ the inequality

(D)™ Y Falz,t, 00 2 v{l¢])n*™

le|=2m

holds;
Gi1) for each j =1,...m the function G;(z,t,(;) has all mixed continuous deriva-
tives with respect to variables ¢ up to the order 4m —m; +1, G;(z,t,0)=0;

For (:’D,t) €S, {€ RMG@m) ) C_’f = {6,3 : |6| < mj} (here Jj= 1;m) we define

L($:t=§a5 + 7N, Q) == (_l)m Z Fy(z,t, E)(5 = T??)a;
|laj=2m

Bj(xataCjaa"'Tn) = Z Gjﬁ(xatagj)(a'l-fn)ﬁ: J=m,

|Bl=m;

where 7 is the unit vector in the direction of outward normal to 9 at the point z, §
means an arbitrary vector from the plane tangent to 9 at the point x, 7 is complex
variable and ¢ is real number.

If ¢ > -26*, 0 <o < () and |g| + || > O, then L(z,t,&,6+ m1,q) as a
polynomial of 7 has m roots 77t with positive real part, other roots are with negative
real part [1]. We denote

m

L*(z,t,6,6,1,q) == [[ (r = 7})

s=1

and assume that the following condition (Lopatynsky condition) is fulfilled:

G, ) for each (z,t) € St, £ € RM(2m) and §, that belongs to the tangent plane to
0Q at the point z, inequalities ¢ > —7|6|*™, 0 < ¥ < v(|£|) and |g|+ 6] > O
imply linear independence of B; by module of L*.

We assume that the following inclusions for the functions from the right side of (1.1)
- (1.3) are fullfilled:

35 ,_L’2_£‘_j,__ )
f & W}Szmal)(QT)’ gj € ng‘lm mj—y Zm ﬁ;)(ST), J= 1,m’
(4m—2m)

he W, Q). (1.6)

We also assume that compatibility conditions for problem (1.1) — (1.3) are fullfilled.
We shall use notation

4O(z) = u(z,0), ¥V(a) = 2(a,0)
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From (1.1), {1.3) we can determine that
u9(z) 1= h(z),
w0 (g) = %(w,@) = f(2,0) + F(,0,h, D*h, ... D*™R)

Formulating compatibility conditions for (1.1) ~ {1.3) we shall use the following equal-
ities (here j=1,...m):

Gj(z,0,u9, ... D™u®) = g:(z,0), (1.7)
9 ©) . prig©
&GJ‘(:{:,G,U yee - DM
e Z Gia(2,0,4®, .. D™ N DRN (5 0) = «g«»gj(m, 0). {1.8)
Blsmy ot

We say that compatibility conditions for (1.1) ~ (1.2) are fullfilled if

C) for each j = 1,...m condition (1.7) is satisfied and condition (1.8) is fulfilled
for such j that p > Zokti

i
2m—-my '

2. REDUCTION TO OPERATOR EQUATION

2.1. Reduction to the problem with zero initial conditions.

In a standard way (see [2]) we can construct a function v € Wém’z) (Qr) that satisfies
conditions

v(z,0) = u'V(x), §($, 0)=u(z) zeq.

Now we introduce a new function u; = u —v. If u is the solution of problem (1.1)
- (1.3) then w; is the solution of boundary value problem

%%l ~ FO(z,t,uy, Dluy, ... D?™uy) = fO(z,8), (2,8) € Qr, (2.1)
G;(z'l} (2, t,uy, .. .D™uy) = g?}(:c, t), (z,t) € Sp, j =1,m, (2.2)
u{z,0) = 0, e (2.3)

where

FO et ug, Dlug, ... D*™uy) =
Flz. t,u; + U,Dl(ﬁ}_ + ’U), .. .ng(u:{ + ’U))""
— F(z,t,v, D',... D*™y),

FOz,8) = f(z,t) - B[v],
G§1)(x, by Uy, ... D™ uy) = Gj(x, tur+v,.. D™y +v) — \Iﬂ;;-{v],‘
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9z, t) = g;(z,t) ~ Biv), 5 =T,m.

Additionaly to Fy )}, F3), Gy), G2 ), we introduce conditions

F3) function F(z,t,£) has all continuous derivatives with respect to variables &5
up to the order 2m +1, F(z,1,0) =0
F4) operators

Fa(‘? "1 u? ’Dlu? e Dzmu) : Wzi(lém,Z) (QT) - W1£2m’z} (QT)

are bounded and continuous;

Gy ) foreach j function G;{x,t,{;) has all mixed continuous derivatives with respect
to ng up to the order dm ~m; +1, G;(z,t,0) = 0;

G4 ) operators

2

. 4 _la "““""','i_ )8

(S ) W(ém My 22— g—iwm}(sfr)

are bounded and continuous.

LEMMA 2.1. Assume that conditions (1.4} ~ (1.7), F\ ) ,Fy ), G1 ), Go ) for problem
(1.1} ~ (1.8) are satisfied and u € Wé"m’z}(Qr) is the solution of (1.1) — (1.8). Then
1) function FM(z,t,€) satisfies conditions Fy) (with some function vV that,
posstbly, differs from v ), F3 ), Fy ), and functions G;z)(:c,t,(;j) satisfy condi-
tions Ga ), Gs ), G4 );
ii) the following inclusions for uy{z,t), f ¥ (x,t), g;‘}(:z: t) are fulfilled:
b € WERDOQr), I ¢ WEMDO(Qr),
R CON R

LEMMA 2.2. Assume that conditions of lemma 2.1 are fulfilled and v, € W;Sém’z)’o(QT)
is the solution of (2.1) — (2.8). Then function u{z,t) = ui(z,t)+v(z,t) is the solution
of (1.1} - (1.8).

2.2. Definition of operator.
Thus, instead of problem (1.1) ~ (1.3) we can analyze equivalent problem

$u= 2 Flet,u D D) = f(nt), (@m0)eQr,  (24)

Flul=Gj(a,t,u,...D™u) = g;(2,8), (2,8) € Sr, j=T,m,  (25)
u € WEmD(Qr), (2.6)

where F satisfies conditions F3), F3), Fy), functions G; satisfy conditons G ),
Gs ), G4 ), and for the functions f,g; the following inclusions are fullfilled:

f € W{2m 1), Q(Q )
g e WimTmTHE R E gy o Tm (2.7)
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Nonlinear operator corresponding to {2:4) — (2.6} will be defined by the following
equality

(Au, ¢) := i»d% [(né{uﬁ*— s} — f¥|:j::))p~i~
5 (“iir}[; + 5] - gjifiéj_mj_i’z_%“%})p} (2.8)
el s s=0

In (2.8) {u,¢} € Wé‘lm‘z)’g(QT) and notification (Au,¢) means value of functional
Au on function ¢

The following theorem formulates the main properties the operator A, defined by
(2.8):

THEOREM 2.3. Assume that conditions (1.4), (1.5), (2.7) Fp )~ F4 ), G3 )~ G4 ) for
problem (2.4) - (2.6) are fulfilled. Then
i} foreach u € W,£4m’2}’0(623~) Au appears to be linear and continuous functional
(4m,2),0
on Wy @Qr).
ii} operator A is bounded, continuous and satisfies the (S), condition on the space
Wlé‘im,z),{}(QT) .

REMARK 2.1. We recall the definition of the condition (S),. for the operator A acting
from the Banach space X into the dual space X* (see, for ezample, [7]). Analogous
condition in [6] was called the condition «) .

We say that an operator A : X — X* satisfies the condition (S). if for arbitrary
sequence {u;} C X which converges weakly to some ug € X and satisfies condition

ﬁmsup(Auj,uj — ug) <0
G0
we have that u; converges strongly to ug .
2.3. Reduction to operator equation.
Now we can inftroduce an operator equation

Au=0, uwe Wi mdQr), (2.9)
where the operator A is defined by (2.8). The following theorem shows connection
between the equation (2.9) and boundary value problem (2.4) — (2.6).

THEOREM 2.12. Assume that problem (2.4) - (2.6) satisfies conditions (1.4}, (1.5),
(8.7), Fo) - F3 ), G2 ) — G4 ). Funclion u € Wéém’z)’e(QT) is a solution for the
problem (2.4) - (2.8) if and only if it is the solution for the equation {2.9).

2.4. Topological characteristic of parabolic problem.
Using notion of operator degree for (S), operators (see [6,7)) we can introduce
topological characteristic for problem (2.4) - (2.5). Namely for an arbitrary bounded

domain D in W,s4m’2}’°(QT) we define an integer mumber Deg(4,D,0) (see section
2, chapter 2 from [7]) if the following condition is satisfied

Au#0, uedD. _ (2.10)

Some results of application of this characteristic to the study of solvability of initial
boundary value problem (2.4) ~ (2.6) will be given in the section 3.
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3. SOME APPLICATIONS

Having reduced problem (2.4) — (2.6) to operator equation with operator satisfy-
ing {5). condition we can investigate solvability of operator equation (2.9) instead of
studying solvablitity of problem {2.4) -~ (2.6). On this way we can apply topological
methods developed in [6,7]. The results of the such way of studying are given here
without proofs.

3.1. Uniqgueness of solution.

THEOREM 3.1. Let conditons (1.4), (1.5}, (2.7), Fo ) - Fs ), Ga )} ~ G4 ) for the
problem (2.4) - (2.6) be fulfilled. Then problem (2.4) - (2.6) can have at most one
solution.

COROLLARY 3.2. Assume that conditions (1.4) - (1.7), Fy ) ,F» ), Gy ), Gy ) for
problem (1.1) — (1.8} are fulfilled. Then problem (1.1) -~ (1.3) can have at most one
solution.

3.2. Local existence of solution.

THEOREM 3.3. Assume thaet conditions (1.4), (1.5), (2.7), Fa ) - Fy ), G2 ) - G4 )
for the problem (2.4) ~ (2.8) are satisfied and K is some positive number. Then there
exists positive Ty , dependent on K , but independent of functions from the right side of
problem (2.4) — (2.6), such the problem (2.4) — (2.6) has a solution u € W,§4m’2)’0(Qq~)
for 0 < T < Ty if the following inequalities hold:

{(4m—m;—- 5.2~

) jppe—
pSt LK, j=1Lm

AP < K, gl

pJQT

COROLLARY 3.4. Assume that conditions (1.4} -~ (1.7}, Fy ) ,Fy ), Gy ), G2 ) for the
problem (1.1) - (1.3) are fulfilled and K 1is some positive number. Then there erists
positive Ty that depends on K, such that the problem (1.1} - (1.3) has a solution

u € W,§4m’2) (Qr) for 0 <T < Ty if the following inequalities hold:

1

2m,1 (4m—mj— 3,2 T i R
D < g, gy e TR < g, =Tom,

Ay 218
hlpe * <K.

3.3. Conditional solvability of initial boundary value probiems.
We include initial boundary value problem (2.4) — (2.6) in one-parametrical family of
problems

&[] = %3:; ~ Fy(z.t,u, Dy, . D™u) = 1§(z,4), (2,t) € Qr, (2.11)

b ——

U, [u] = G (2,t,u,.. . D™u) = rg;(z,t), (z,t) € Sp, j=1,m, (2.12)
u € WimD9(Qr), (2.13)

where F(z,t,8) = F(r,,t,€), 7 € 0,1}, (z,1) € Qr, £ € RMC™ | G, (x,4,{;) =
Gj(Tsa:&ts Cj); T e {{}a 1}: (3:: t) € ST: Cj € RM(mj}a J= m

We assume that F(z,t,§) = Fi(z,1,£), Gi(z,t,(;) = G;1(=,1,(;) , where functions
F(z,t,§), Gj{z,t,(;) figure in the left side of equations in problem (2.4) — (2.6).

208



THEOREM 3.5. Let functions F.(x,t,¢) together with all their derivatives by &5 up

to the order 2m + 1 be continuous for 7 € [0,1], (z,t) € Qr, & € RM™) gnd
Fo(z,t,0) = 0 and we assume that for every 7 € [0,1] function F.(z,t,£) satisfies
conditions Fy ), Fy ). Let function G;.(2,8,(;), j € 1,...m and all its dertvatives up
to the order d4m—m;+1 by {g be continuous for T € [0,1], (z,t) € Sy, {; € RMms)
and G;.(z,1,0) = 0 and functions G;, satisfy condiitions G, ), Gg ), for every
r € [0,1]. Assume that conditions (1.4), (1.5) are fullfilled and for each r € [0,1]
mclusions (2.7) are valid. We suppose that there exists a number R = R{f,01,...gm)
independent of 7 and such that problem (2.11) - (2.13) for each 7 € [0,1] has no
solutions outside the ball

{u € WimD(Qr) : [lu- |5 < R}.

Then problem (2.4) — (2.6) has the unique solution u € W™ 20(Qp) .
3.4. Theorem of domain preservation.

THEOREM 3.6. Assume that initial boundary value problem (2.4) - (2.8) satisfies con-
ditions of Theorem 2.8 and D is the open set in Wéém’z)’e(QT) . Then the set

R(D) :={(%3§ ~ F(, - u, DY, ... D*™), G1 (-, 4, ... D™u), ...

G (5, - - .Dm"‘u)) U € D}

will be open in space

Wézm’z{mj})’e(QT;ST) o Wézm’l}'g(QT) % (]:[ W(émnmjuifﬂm;-};“y},;)&(sz,)) .

i=1

COROLLARY 3.7. Assume that initial boundary value problem (2.4) ~ (2.8) satisfies
conditions of Theorem 2.3. Then the set :

R = {(f,91,...9m) € W™ DOQr, Sp) :

problem (2.4) — (2.8) has a solution u € W1§4m’2}’°(Qq~)}

is open in Wézm’{mj }}’G(Q:{*, St) .

COROLLARY 3.8. Assume that initial boundary velue problem (2.4) - (2.6) satisfies
conditions of Theorem 2.3 and U : R® — W,§4m’2)’9(QT) is operator which maps
vector of functions (f,g1,...9m) € RO ( where R is defined in Corollary 3.7 ) to
the solution of problem (2.4) - (2.6). Then operator U is continuous on R .
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3.5. Convergence of the Galerkin Approximants.

Let {vx}3>, be the complete system of functions in Wéém’z}’e(QT) . Assume that
initial boundary value problem (2.4) — (2.6) satisfies conditions of theorem 2.3. We call
” & - approximate solution” of boundary value problem (2.4) —~ (2.8) the function ug

such that 4
2= Zciﬁ}vk(m,t)
ksl

and .
(Aug,'uk) = 0, k == l,ﬁ,

where ciﬁ} are real numbers and operator is defined by (2.8).

We say that problem (2.4) ~ {2.6) has a ” bounded sequence of & - approximate
solutions” if there exists mumber £, such that for 8 > £ problem (2.4) - {2.6) has £
- approximate solution and the sequence {u}3L s is bounded.

THEOREM 3.9. Assume that conditions (1.4), (1.5), (2.7), Fy ) - Fs ), G2 ) ~ G4 )
for problem (2.4) — (2.6) are fulfilled. The problem (2.4) — (2.6} has a solution ug €

W,§4m’2)’0(QT) if and only if it has bounded sequence of £ - approzimate solutions
{ust3rg, - The sequence ug strongly converges to ug in W, “m 2)0(62 ).
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